China Professional SWC-180bh Tubular Design with Standard Length Compensation for Steel Rolling Mill High Speed/High Torque Universaljoint Shaft/Cardan Shaft/Drive Shaft

Product Description

Professional Cardan Shaft with ISO Certificate for Rolling mill

 

SWC-BH Welded shaft design, with standard length compensation
TYPE Gyration Diameter D/mm Nominal torque   Tn
/kN·m
   Fatigue torque  Tf
/kN·m
Bearing life ratio     KL Axis angel
β/(.)
Length compensation
LS/mm
Dimension/mm Moment of inertia I/kg·m2 Weight/kg
              Lmin D1
(js11)
D2
(H7)
D3 Lm n×Φd k t b
(h9)
g Lmin Each additional 100m Lmin Each additional 100mm
SWC100BH 100 2.5 1.25 5.795×10-4 ≤25 55 405 84 57 60 55 6×Φ9 7 2.5 0.004 0.0002 6.1 0.35
SWC120BH 120 5 2.5 4.641×10-3 ≤25 80 485 102 75 70 65 8×Φ11 8 2.5 0.011 0.0004 10.8 0.55
SWC150BH 150 10 5 0.51×10-1 ≤25 80 590 130 90 89 80 8×Φ13 10 3 0.042 0.0016 24.5 0.85
SWC180BH 180 22.4 11.2 0.245 ≤15 100 840 155 105 114 110 8×Φ17 17 5 24 7 0.175 0.007 70 2.8
SWC200BH 200 36 18 1.115 ≤15 110 860 170 120 133 115 8×Φ17 17 5 28 8 0.314 0.013 98 3.7
SWC225BH 225 56 28 7.812 ≤15 140 920 196 135 152 120 8×Φ17 20 5 32 9 0.538 0.571 122 4.9
SWC250BH 250 80 40 2.82×101 ≤15 140 1035 218 150 168 140 8×Φ19 25 6 40 12.5 0.996 0.571 172 5.3
SWC285BH 285 120 58 8.28×101 ≤15 140 1190 245 170 194 160 8×Φ21 27 7 40 15 2.011 0.051 263 6.3
SWC315BH 315 160 80 2.79×102 ≤15 140 1315 280 185 219 180 10×Φ23 32 8 40 15 3.605 0.08 382 8
SWC350BH 350 225 110 7.44×102 ≤15 150 1440 310 210 245 194 10×Φ23 35 8 50 16 5.316 0.146 532 11.5
SWC390BH 390 320 160 1.86×103 ≤15 170 1590 345 235 267 215 10×Φ25 40 8 70 18 12.16 0.222 738 15
SWC440BH 440 500 250 8.25×103 ≤15 190 1875 390 255 325 260 16×Φ28 42 10 80 20 21.42 0.474 1190 21.7
SWC490BH 490 700 350 2.154×104 ≤15 190 1985 435 275 351 270 16×Φ31 47 12 90 22.5 34.10 0.690 1542 27.3
SWC550BH 550 1000 500 6.335×104 ≤15 240 2300 492 320 426 305 16×Φ31 50 12 100 22.5 68.92 1.357 2380 34

Dynamic Balance Testing:

Three Coordinate Detection

Code Each Part:

CNC processing center:

 

structure universal Flexible or Rigid Rigid Standard or Nonstandard Nonstandard
Material Alloy steel Brand name QSCD Place or origin HangZhou,China
Model SWC medium Raw material heat treatment Lenghth depend on specification
Flange Dia 160mm-620mm Normal torque depend on specification Coating heavy duty industrial paint
Paint color Customization Application Rolling mill machinery OEM/ODM Available
Certificate ISO,SGS Price depend on specification Custom service Available

Frequently Asked Questions

 

 

Q5: Let’s talk about our inquiry?

 

 

 

 

Q4:Do you test all your goods before delivery?

 

A: Certainly, we do dynamic balance testing for all goods,We can provide testing vedios.

 

 

Q3: What is your sample policy?

 

A: You can order 1 piece sample to test before quantity order.

 

 

Q2: What is your terms of delivery?

 

A: FOB, CIF, CFR,EXW,DDU

 

 

 

Q1: What is your payment terms?

 

A: T/T 30% as deposit, and 70% before delivery, we will show you the photos of product and package CZPT finished.

Standard Or Nonstandard: Nonstandard
Shaft Hole: 180
Torque: 11.2kn.M
Bore Diameter: 90
Speed: 1500
Structure: Rigid
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cardan shaft

What maintenance practices are essential for prolonging the lifespan of cardan shafts?

Maintaining proper maintenance practices is crucial for prolonging the lifespan of cardan shafts and ensuring their optimal performance. Here are some essential maintenance practices to consider:

1. Regular Lubrication:

– Proper lubrication of the cardan shaft’s universal joints is vital for reducing friction, preventing wear, and ensuring smooth operation. Regularly lubricate the universal joints according to the manufacturer’s recommendations using the appropriate lubricant. This helps to minimize frictional losses, extend the life of the needle bearings, and maintain the efficiency of power transfer.

2. Inspection and Cleaning:

– Regular inspection and cleaning of the cardan shaft are essential for identifying any signs of wear, damage, or misalignment. Inspect the shaft for any cracks, corrosion, or excessive play in the universal joints. Clean the shaft periodically to remove dirt, debris, and contaminants that could potentially cause damage or hinder proper operation.

3. Misalignment Adjustment:

– Check for any misalignment between the driving and driven components connected by the cardan shaft. If misalignment is detected, address it promptly by adjusting the alignment or replacing any worn or damaged components. Misalignment can lead to increased stress on the shaft and its components, resulting in premature wear and reduced lifespan.

4. Balancing:

– Periodically check the balance of the cardan shaft to ensure smooth operation and minimize vibration. If any imbalance is detected, consult with a qualified technician to rebalance the shaft or replace any components that may be causing the imbalance. Balanced cardan shafts promote efficient power transfer and reduce stress on the drivetrain.

5. Torque and RPM Monitoring:

– Keep track of the torque and RPM (revolutions per minute) values during operation. Ensure that the cardan shaft is not subjected to torque levels exceeding its design capacity, as this can lead to premature failure. Similarly, avoid operating the shaft at speeds beyond its recommended RPM range. Monitoring torque and RPM helps prevent excessive stress and ensures the longevity of the shaft.

6. Periodic Replacement:

– Despite regular maintenance, cardan shafts may eventually reach the end of their service life due to normal wear and tear. Periodically assess the condition of the shaft and its components, considering factors such as mileage, operating conditions, and manufacturer recommendations. If significant wear or damage is observed, it may be necessary to replace the cardan shaft to maintain optimal performance and safety.

7. Manufacturer Guidelines:

– Always refer to the manufacturer’s guidelines and recommendations for maintenance practices specific to your cardan shaft model. Manufacturers often provide detailed instructions regarding lubrication intervals, inspection procedures, and other maintenance requirements. Adhering to these guidelines ensures that the maintenance practices align with the manufacturer’s specifications, promoting the longevity of the cardan shaft.

By following these essential maintenance practices, you can prolong the lifespan of cardan shafts, optimize their performance, and minimize the likelihood of unexpected failures. Regular maintenance not only extends the life of the cardan shaft but also contributes to the overall efficiency and reliability of the systems in which they are utilized.

cardan shaft

What safety precautions should be followed when working with cardan shafts?

Working with cardan shafts requires adherence to certain safety precautions to prevent accidents, injuries, and damage to equipment. Whether during installation, maintenance, or repair, it is essential to follow these safety guidelines:

1. Personal Protective Equipment (PPE):

– Always wear appropriate personal protective equipment, including safety glasses, gloves, and protective clothing. PPE helps protect against potential hazards such as flying debris, sharp edges, or contact with lubricants or chemicals.

2. Training and Familiarity:

– Ensure that personnel working with cardan shafts are adequately trained and familiar with the equipment and procedures involved. They should understand the potential hazards, safe operating practices, and emergency procedures.

3. Lockout/Tagout Procedures:

– Before working on cardan shafts, follow proper lockout/tagout procedures to isolate and de-energize the equipment. This prevents accidental activation or movement of the shaft while maintenance or repair activities are being performed.

4. Secure the Equipment:

– Before starting any work on the cardan shaft, ensure that the equipment or vehicle is securely supported and immobilized. This prevents unexpected movement or rotation of the shaft, reducing the risk of entanglement or injury.

5. Ventilation:

– If working in enclosed spaces or areas with poor ventilation, ensure adequate ventilation or use appropriate respiratory protective equipment to avoid inhalation of harmful fumes, gases, or dust particles.

6. Proper Lifting Techniques:

– When handling heavy cardan shafts or components, use proper lifting techniques to avoid strains or injuries. Employ lifting equipment, such as cranes or hoists, where necessary, and ensure the load capacity is not exceeded.

7. Inspection and Maintenance:

– Regularly inspect the condition of the cardan shaft, including universal joints, slip yokes, and other components. Look for signs of wear, damage, or misalignment. Perform routine maintenance and lubrication as recommended by the manufacturer to ensure safe and efficient operation.

8. Avoid Exceeding Design Limits:

– Operate the cardan shaft within its specified design limits, including torque capacity, speed, and misalignment angles. Exceeding these limits can lead to premature wear, mechanical failure, and safety hazards.

9. Proper Disposal of Used Parts and Lubricants:

– Dispose of used parts, lubricants, and other waste materials in accordance with local regulations and environmental best practices. Follow proper disposal procedures to prevent pollution and potential harm to the environment.

10. Emergency Response:

– Be familiar with emergency response procedures, including first aid, fire prevention, and evacuation plans. Maintain access to emergency contact information and necessary safety equipment, such as fire extinguishers, in the vicinity of the work area.

It is important to note that the above safety precautions serve as general guidelines. Always refer to specific safety guidelines provided by the manufacturer of the cardan shaft or equipment for any additional precautions or recommendations.

By following these safety precautions, individuals working with cardan shafts can minimize the risks associated with their operation and ensure a safe working environment.

cardan shaft

Can you explain the components and structure of a cardan shaft system?

A cardan shaft system, also known as a propeller shaft or drive shaft, consists of several components that work together to transmit torque and rotational power between non-aligned components. The structure of a cardan shaft system typically includes the following components:

1. Shaft Tubes:

– The shaft tubes are the main structural elements of a cardan shaft system. They are cylindrical tubes made of durable and high-strength materials such as steel or aluminum alloy. The shaft tubes provide the backbone of the system and are responsible for transmitting torque and rotational power. They are designed to withstand high loads and torsional forces without deformation or failure.

2. Universal Joints:

– Universal joints, also known as U-joints or Cardan joints, are crucial components of a cardan shaft system. They are used to connect and articulate the shaft tubes, allowing for angular misalignment between the driving and driven components. Universal joints consist of a cross-shaped yoke with needle bearings at each end. The yoke connects the shaft tubes, while the needle bearings enable the rotational motion and flexibility required for misalignment compensation. Universal joints allow the cardan shaft system to transmit torque even when the driving and driven components are not perfectly aligned.

3. Slip Yokes:

– Slip yokes are components used in cardan shaft systems that can accommodate axial misalignment. They are typically located at one or both ends of the shaft tubes and provide a sliding connection between the shaft and the driving or driven component. Slip yokes allow the shaft to adjust its length and compensate for changes in the distance between the components. This feature is particularly useful in applications where the distance between the driving and driven components can vary, such as vehicles with adjustable wheelbases or machinery with variable attachment points.

4. Flanges and Yokes:

– Flanges and yokes are used to connect the cardan shaft system to the driving and driven components. Flanges are typically bolted or welded to the ends of the shaft tubes and provide a secure connection point. They have a flange face with bolt holes that align with the corresponding flange on the driving or driven component. Yokes, on the other hand, are cross-shaped components that connect the universal joints to the flanges. They have holes or grooves that accommodate the needle bearings of the universal joints, allowing for rotational motion and torque transfer.

5. Balancing Weights:

– Balancing weights are used to balance the cardan shaft system and minimize vibrations. As the shaft rotates, imbalances in the mass distribution can lead to vibrations, noise, and reduced performance. Balancing weights are strategically placed along the shaft tubes to counterbalance these imbalances. They redistribute the mass, ensuring that the rotational components of the cardan shaft system are properly balanced. Proper balancing improves stability, reduces wear on bearings and other components, and enhances the overall performance and lifespan of the shaft system.

6. Safety Features:

– Some cardan shaft systems incorporate safety features to protect against mechanical failures. For example, protective guards or shielding may be installed to prevent contact with rotating components, reducing the risk of accidents or injuries. In applications where excessive forces or torques can occur, cardan shaft systems may include safety mechanisms such as shear pins or torque limiters. These features are designed to protect the shaft and other components from damage by shearing or disengaging in case of overload or excessive torque.

In summary, a cardan shaft system consists of shaft tubes, universal joints, slip yokes, flanges, and yokes, as well as balancing weights and safety features. These components work together to transmit torque and rotational power between non-aligned components, allowing for angular and axial misalignment compensation. The structure and components of a cardan shaft system are carefully designed to ensure efficient power transmission, flexibility, durability, and safety in various applications.

China Professional SWC-180bh Tubular Design with Standard Length Compensation for Steel Rolling Mill High Speed/High Torque Universaljoint Shaft/Cardan Shaft/Drive Shaft  China Professional SWC-180bh Tubular Design with Standard Length Compensation for Steel Rolling Mill High Speed/High Torque Universaljoint Shaft/Cardan Shaft/Drive Shaft
editor by CX 2023-08-29